公司动态
 
首页 > 公司动态  >  文献解读|近红外光触发血小板...

文献解读|近红外光触发血小板库联合光热免疫治疗癌症

2021-05-21

传统抗癌策略(例如化学疗法和放射疗法)伴随着功效和不良副作用的长期存在的问题,迫切要求探索和开发新的高性能方法。近来,光热疗法(PTT)由于其最小的侵袭性,时空精确度,可复制的活性,对耐药性的忽略不计以及仅限于目标区域的光毒性的特殊优势而受到越来越多的关注。考虑到较低的生物毒性和较高的组织穿透深度,近红外光(NIR)始终用于PTT治疗。可以通过光敏剂(如吲哚菁绿,金纳米棒和硫化铜)通过振动松弛,表面等离振子共振或晶格结构将光能转换为热,并且可以在肿瘤部位有效地产生高热杀死肿瘤细胞。

为了改善光敏剂在肿瘤部位的蓄积,已开发出许多类型的纳米级载体,以利用肿瘤血管异常开口和缺陷引起的随机泄漏的增强的渗透性和保留作用。靶向配体的进一步功能化使得这些纳米载体能够进一步赋予对肿瘤细胞的活性亲和力,从而提供了优化抗癌潜能的潜力。

尽管有前途,基于纳米载体的PTT仍然面临一系列关键问题。例如,当前的主动靶向方法高度依赖于成功鉴定在肿瘤细胞上特异性表达的受体。不幸的是,癌症异质性,特别是在肿瘤发展过程中和/或在不同肿瘤和患者之间这些受体的不稳定和非均质表达,大大损害了靶向效率。此外,纳米载体在肿瘤内的渗透受到紧密的细胞外基质及其相关的异常高的组织间隙压力的限制。因此,在大多数情况下,完全消融大肿瘤非常困难。因此,为了改进这些方法,至关重要的是开发新的基于PTT的药物,这些药物应可靠地富集并渗透到肿瘤部位,并通过累加甚至协同作用显示出更高的治疗功效。

最近,血小板(PLT)已通过多种机制用作有效的抗癌载体,例如血管内皮粘附,手术损伤引起的聚集以及活化后分泌的纳米级囊泡。PLT用于通过血管粘附实现抗体向肿瘤的靶向递送,从而抑制了肿瘤的生长。在PTT方面,最近的研究表明,体温过高可以诱导肿瘤细胞释放抗原。这种反应不仅揭示了PTT潜在机制与免疫激活之间的内在联系,而且还鼓励将PTT与免疫疗法相结合以改善抗癌治疗。

受这些基于PLT的药物递送以及PTT与免疫疗法协同机制的研究的启发,中国科学院过程工程研究所生化工程国家重点实验室马光辉课题组报告了仿生PLT库用于联合癌症治疗的发展。在此结构中,将嵌段共聚物萘二酰亚胺-联噻吩衍生物(NDI-BT)设计为光热材料,然后合成光热纳米颗粒(N)并将其与免疫刺激剂R837盐酸盐(R)一起整合到PLT中,构造工程化的PLT(N + R @ PLT)。静脉注射后,N + R @ PLTs在血液中起循环前哨的作用,并对血管损伤具有敏感的反应。由于肿瘤组织附近的血管内皮细胞之间的连接总是被缺陷所削弱,因此一部分N + R @ PLT可以充当矛头来引发这些血管内皮细胞的粘附,从而最初将N + R货物转运至血管内皮细胞。

用NIR照射后,局部热疗会导致急性血管损伤,随后引起聚集级联反应,从而在肿瘤血管处形成阻塞。在这方面,有可能以更多依赖反馈的方式招募更多增强型PLT,从而使N + R货物的进一步积累能够就地形成。随后,在这些激活的PLT上进一步从质膜上产生纳米级前血小板(nPLT),这些前血小板将货物转移到深部肿瘤组织中,扩大了侵袭面积。PTT诱发肿瘤消融后,释放的肿瘤相关抗原的免疫原性会诱导人体对残留,转移性和复发性肿瘤的免疫应答。在免疫刺激剂R的帮助下,这种作用得到了显著改善。

该研究系统地验证了PLTs的上述优点以及N和R在体内的协同作用,并在9种不同的小鼠模型中证明了有效的治疗作用。最值得注意的是,该研究还证明了在基于人源化小鼠和患者源性肿瘤异种移植物(PDX)的复杂模型中,使用人PLT(hPLTs)的N + R @ hPLT  arsenal的功效。总之,这些结果显示了在高性能和抗癌联合疗法中使用仿生PLT平台的巨大前景

基本信息

题目:Near-infrared light–triggered platelet arsenal for combined photothermal-immunotherapy against cancer

期刊:science advances

影响因子:13.1159

PMID:33771861

通讯作者:马光辉

作者单位:中国科学院过程工程研究所生化工程国家重点实验室

索莱宝合作产品:

产品名称

产品货号

Mouse TNF-α ELISA KIT

SEKM-0034

Mouse IL-6 ELISA KIT

SEKM-0007


摘 要

为了解决肿瘤治疗中长期存在的肿瘤渗透和靶向性问题,作者开发了一种基于抗癌血小板的仿生制剂(N+R@PLTs)将光热纳米颗粒(N)和免疫刺激剂(R)整合到血小板(PLTs)中。利用血小板的聚集特性和较高的光热容量,N+R@PLTs 通过靶向有缺陷的肿瘤血管内皮细胞,在局部热疗引起的急性血管损伤部位以正反馈聚集级联的形式聚集,起到武器库的作用,随后分泌纳米级血小板(nPLTs)将活性成分运送到肿瘤组织深处。免疫刺激剂增强了消融肿瘤释放的抗原的免疫原性,从而诱导了对攻击残留,转移性和复发性肿瘤的更强的免疫反应。通过低功率近红外光照射激活后,光热和免疫成分协同作用,在九种模拟一系列临床要求的小鼠模型中发挥了极高的治疗功效,最值得注意的是,该研究还证明了在基于人源化小鼠和患者源性肿瘤异种移植物(PDX)的复杂模型中,使用人PLT(hPLTs)的N + R @ hPLT  arsenal的功效最为显著。

研究内容及结果

1.光热聚合物纳米粒子的合成

为了构建目标仿生N+R@PLT平台,作者制备了具有高光热转换效率的纳米粒子(图1A)。通过Suzuki反应[数-平均分子量(Mn)=163473;图S2A]。将这种位于疏水核中的光热共聚物和双硬脂酰磷酸乙醇胺(DSPE)-PEG的亲水聚乙二醇(PEG)段通过典型的共沉淀策略装饰表面构建了杂化纳米颗粒。所得纳米颗粒呈明确的球形,平均水动力直径约为50nm,具有明显的单分散性和表面负电荷(图1B和图S2、B和C)。此外,纳米颗粒对正常细胞的细胞毒性很小。确保了在体内给药的安全性(图S3、A和B)。

纳米颗粒具有高度一致的热稳定性和光稳定性。此外,在水介质中,这些纳米粒子产生明确的光声信号,其强度与纳米粒子浓度呈完美的线性关系(图1E),这意味着它们具有在体内引导光声成像的潜力。

2.N+R@PLTs的结构与特征

为了使光热纳米颗粒功能化,使其具有额外的PLT反应性和免疫原性,纳米颗粒被生物素修饰,而PLT膜上的CD42a被亲和素标记的抗CD42a抗体预处理。作者通过细胞切片透射电镜(TEM)成像检测PLT内部的纳米颗粒来验证CD42a分子可以促进纳米颗粒内化为PLT(图1F中的黄色箭头,与图S3C中的PLT相比)。在内化过程中,还引入了均匀分散在培养基中的免疫刺激剂R837盐酸,使得超分辨率PLT图像中同时存在N和R信号(图1G)。大约60个纳米颗粒和480万个R837盐酸盐分子被加载到每个PLT中(图S2E)。这种内化几乎没有影响PLT的大小和表面电荷,忠实地保留了光热光谱属性(图S2、C、F和图1H和I)。关于PLT生理学,红细胞与PLTs孵化后,没有观察到明显的溶血(图S3,D和E),说明其具有良好的生物相容性。此外,通过流式细胞仪(FCM)(图1J)和荧光成像策略(图S3F)评价N+R@PLTs激活后的聚集行为。而且作者发现,在二磷酸腺苷处理的N@PLT和N+R@PLT样品均显示出明显的聚集信号增加。这一发现与天然PLTs的特性反应性高度一致,说明PLTs在加载光热纳米颗粒和免疫刺激分子后仍保持其自然响应功能。

TEM图像进一步证明了这种反应性(图1K,左),显示静息态N+R@PLTs是圆形的,没有明显的伪足,而活动态N+R@PLTs变得更加树枝状和膨胀,类似于天然PLT。此外,激活导致生成丰富的nPLT,这也被TEM和扫描电镜(图1K,左插图,和图S3G)和FCM数据证实,显示高PLT标记物CD62P表达的纳米小泡信号增加(图1K,中)。在nPLTs中,观察到NDI-BT纳米颗粒(N)(图S3H)。同时,N和R的特征信号也在nPLTs中被识别出来(图1K,右),这表明这两种成分可以被nPLTs捕获,以便进一步的转运。

阅读全文点链接

https://mp.weixin.qq.com/s/5dczTkJHFuDiVtMjF7zV7A

凤凰彩 星启娱乐